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Abstract

We characterize the equilibrium of the standard sovereign default model where a risk-averse borrower

issues long-term non-contigent bonds but cannot commit its future selves to repay. We show existence

and uniqueness of the Markov equilibrium of the dynamic game with successive borrowers that is

associated to this environment. We show that the price and policy functions exhibit jumps and kinks

in various places. A suitable choice of arbitrary small noise yields price and policy functions that are

differentiable almost everywhere which allows us to characterize the equilibrium using only decision

rules of the agents by means of a set of functional equations. Further, we describe the equilibrium

objects via an Euler equation with derivatives on future actions —i.e. a generalized Euler equation

(GEE) where the effects due to default and those to dilution can be disentangled. Computational

strategies using these functional equations allow for solving the model with continuous functions using

policy iterations. A sufficient variance of the noise allows for concavity and hence unique solution of

the GEE which eases computation.
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1 Introduction

The use of long-term debt (in the spirit of Hatchondo and Martinez (2009), Arellano and Rama-

narayanan (2012) and Chatterjee and Eyigungor (2012)) has become omnipresent in the literature on

sovereign debt. It is characterized by competitive risk-neutral lenders with deep pockets that trade long-

term non-contingent debt contracts with a risk-averse borrower that can always choose to default. The

borrower’s income is stochastic, so there is value to accessing credit markets. Nevertheless, the borrower

cannot credibly commit its successors (or future selves) to repay which affects the price of debt, a feature

that requires thinking in terms of equilibrium rather than of a maximization problem.

This is a particularly fiendish problem as we will see below. In its original form, consumption and

bond holdings policy functions do have discontinuities, kinks and flat areas. Accordingly, these models

are solved numerically by discretization of the choice and state spaces, and even in these circumstances,

convergence to a solution is not typically achieved without the use of randomization devices (Chatterjee

and Eyigungor (2012) and Dvorkin et al. (2021)).

The purpose of this paper is to provide a precise characterization of the equilibrium, its existence,

uniqueness and, in particular, of the elements that determine the trade-offs faced by the borrower. In

addition, we show how to ease the computation of these models while increasing precision and doing

away with the issues induced by discretization.

We first lay down the original decision problem and show that the bond price admits points of non-

differentiability which affect the optimal borrowing decision. We proceed by posing extreme value shocks

(or in general any continuous shocks) to the default decision, hereby transforming the decision problem

to allow for randomization between repayment and default.

In this environment, we establish that there are two types of equilibrium behavior in the decision

problem. In the first, the borrower chooses to never exceed the risky debt limit, and so does not face

a discount for dilution risk. In the second, the borrower enters the risky borrowing region with positive

probability, so all debt levels have a discount for dilution risk. The presence of those two behaviors raises

the question of whether these are unique equilibria for economies with different primitives, or whether

there is multiplicity in the long-term debt model.

Taking the limit of finite horizon economies, we show that an equilibrium exists and is unique with the

same properties than those of finite horizon economies. This unique equilibrium is a Markov equilibrium.

In other words, we rule out the type of trigger strategy equilibria coded as a Markov-like equilibria

described by Krusell and Smith (2003). In doing so, our approach mimics the one of Bhaskar et al.

(2012) in repeated games.
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We characterize the optimality conditions analytically by means of an intertemporal first-order con-

dition with derivatives on future actions —i.e. a Generalized Euler Equation (GEE). We proceed by first

assuming convexity of the decision problem and differentiability of the price, the default set and the bond

policy function to derive the GEE, and then we provide conditions under which these two assumptions

hold true. The GEE enables a complete characterization of interior solutions and determines the main

forces at play. We show that the introduction of extreme value shocks can convexify the decision prob-

lem and enables the price and the policy functions to become smooth everywhere. Hence, the proper

derivation of the GEE is possible for all positive values of debt. Even in the case that the problem is not

convex, the GEE is still very useful, albeit it has more than one solution, and computation requires that

we also keep track of the value function to make sure that we pick the global maxima.

The starting point of the literature on sovereign debt and default is the study of Eaton and Gersovitz

(1981) which has been directly extended by Aguiar and Gopinath (2006) and Arellano (2008).1 The initial

model considers a sovereign borrower which trades one-period bonds with a continuum of competitive

lenders. In this environment, Hatchondo and Martinez (2009), Arellano and Ramanarayanan (2012)

and Chatterjee and Eyigungor (2012) introduce long-term debt in the form of a geometrically decreasing

maturity rate. This approach is computationally friendly as it cuts down on the number of state variables

and enhances the quantitative fit to the data. Nevertheless, analytical characterization of the problem

becomes more arduous as the bond price depends on future actions.

Our analysis provides an analytical characterization of incomplete markets models with default under

long-term bonds. Such characterization already exists for short-term debt. More precisely, Auclert and

Rognlie (2016) show existence and uniqueness in Eaton and Gersovitz (1981). The proof relies on the

standard argument made by Bulow and Rogoff (1989) that reputation alone cannot sustain debt. Feng

and Santos (2021) extend the existence and uniqueness results to a model with capital, and furthermore

show existence of an equilibrium with smooth policies with the addition of taxation. Aguiar et al. (2019)

also show existence and uniqueness by looking at the dual problem of the revenue maximizing lender.

Finally, Clausen and Strub (2020) use reverse calculus and nested optimization. Their paper is the

closest in spirit to ours as they also use differentiability to characterize equilibrium, albeit of short term

debt (and other environments such as adjustment costs and social insurance). In our environment that

long-term bonds introduce the possibility to dilute legacy debt which requires the bond policy to be

differentiable alongside the bond price and the default set. With short-term debt, differentiability of the

1There is an associated large literature on household bankruptcy that is based on essentially the same theory and is
supported by the U.S. Bankruptcy code that justifies many of the assumptions made (see for instance Livshits et al. (2007)
or Chatterjee et al. (2007)).
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bond policy is not needed. Another important difference between is that in Clausen and Strub (2020)

the lack of smoothing shocks prevent the use of the GEE because of kinks that have to be found. Their

results only speak of situations where the first order condition holds as an equality.

Regarding long-term debt, Chatterjee and Eyigungor (2012) show the existence of an equilibrium

bond price. Their proof relies on randomization through continuous i.i.d. shocks and restricting the

choice of debt to a finite set. This allows for the application of Brouwer’s Fixed Point Theorem.

Subsequently, Aguiar and Amador (2020) show that there exist two equilibria in such class of model: a

“borrowing” equilibrium where the borrower issues debt until it reaches some debt limit and defaults,

and a “saving” equilibrium where the borrower reduces the stock of debt until default no longer occurs

with positive probability. In contrast, we show uniqueness by focusing on equilibria that are the limit

of those of ficanite economies, while Aguiar and Amador (2020) might not rule out trigger strategy

equilibria coded as a Markov-like equilibria.

Our characterization relies on the GEE. More precisely, the Euler equation contains derivatives of

prices. We therefore relate to the work on time inconsistent policy of notably Krusell et al. (2002, 2010),

Krusell and Smith (2003), Klein et al. (2008), Mateos-Planas (2010) and others. Our work relates

to the work of Hatchondo and Martinez (2009), Niepelt (2014), Arellano and Ramanarayanan (2012),

and Hatchondo et al. (2016) who study the trade-off between the issuance of short-term and long-term

debt and to the work of Arellano et al. (2023) who analyze the decision to partially default. An early

version of Aguiar and Gopinath (2006) and Hatchondo et al. (2016) include also a discussion of the first

order conditions using debt price derivatives. All the aforementioned studies adopt a heuristic approach

by assuming that the relevant policy functions and prices are differentiable ignoring the existence of

the critical points or thresholds discussed above. In opposition, we show that those objects are indeed

differentiable everywhere provided the default decision is affected by utility shocks.

We use the GEE as a basis for computations. This allows us to solve for the policy functions using

global methods that avoid discretization. Specifically, we use piecewise cubic Hermitian polynomials

to approximate policy and value functions as well as prices. The reason is that these functions use

derivatives in their construction and hence their implied derivatives outside the grid can be used in the

evaluation of the GEE. This allows us to compute the equilibrium accurately and fast, a feature that is

not always possible when using discretization of the state space (even if extreme value shocks are used

to avoid oscillations). Hence, we also address the literature on quantitative methods to solve models of

incomplete markets with default. Hatchondo et al. (2010) show that different solution methods such

as splines or Chebyshev polynomials lead to different numerical results than the standard value function
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iteration algorithm in the case of short-term debt. Closer to our analysis, Arellano et al. (2016) use

the Euler equation to solve short-term debt problem numerically, but assume the GEE always holds.

Our characterization applies to the case of long-term debt and suggests the use of small extreme value

shock perturbations to ensure the validity of the GEE everywhere. Thus, our characterization of the GEE

properly relies on two main ingredients: the limit of finite horizon and extreme value shock perturbations.

Moreover, the set of solutions to the GEE will not be unique when the problem is not convex (because

of insufficient utility noise), yet the relevant solution to the GEE (the one associated to the global

maximum) tells us how the different elements weight in the optimal choice.

We rely on extreme value shocks to solve the model with the GEE by means of the endogenous

grid method algorithm developed by Carroll (2006).Unlike Arellano et al. (2020), Mihalache (2020) and

Dvorkin et al. (2021), we only introduce such shocks in the value of defaulting and repayment. We show

that there is a variance of these shocks that is sufficient to ensure strict convexity of the maximization

problem. Contrary to the model with employment lotteries of Rogerson (1988), the decision problem

might remain non-convex with small scale parameters. Finally, we show that extreme value shocks enable

the differentiability of the bond price and the bond policy function.

The paper is organized as follows. Section 2 presents the environment and the decision problem.

Section 3 considers the decision problem under extreme value shocks and 4 additionally bounds the

horizon. Thereafter, Section 5 derives the GEE and characterizes the equilibrium. Section 6 presents

the quantitative analysis including details of the relative performance of various methods. Section 7

concludes. All the proofs are in the Appendix.

2 The Model

We consider a standard model of incomplete markets with default in the spirit of Eaton and Gersovitz

(1981). A risk averse sovereign trades long-term bonds with deep pockets risk neutral lenders. Crucially,

it cannot commit its successors (or future selves) to repay what it owes. We start with the environment

and decisions (Section 2.1) before defining the bond price and the Markov equilibrium (Definition 1).

2.1 Environment and Decisions

There are competitive, risk neutral lenders that discount the future at rate p ≡ 1
1+r where r = R−1

is the exogenous world risk-free interest rate.

The sovereign receives a stochastic endowment y ∈ Y ≡ [y , y ] ⊂ R++ which is i .i .d . distributed with

absolutely continuous distribution function Fy (y) and density fy (y) > 0.2 The sovereign has preferences

2The i .i .d . assumption is to reduce notation. Given that there is no private information, the extension to a Markovian
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represented by a strictly concave, monotone and bijective utility function u : R++ → R of class C∞ and

discounts the future at rate β < p.

The sovereign has access to non-contingent bonds b ∈ B ≡ [b, b] where b > 0 represents a debt

and b < 0 an asset. Bonds are long-term and follow the structure of Hatchondo and Martinez (2009):

each period a coupon of one is paid per unit of debt and a fraction λ ∈ [0, 1) of the debt matures.

In addition, we assume there is some arbitrarily large finite value of debt b > Ry
1−R greater than

the present value of the maximum endowment, and similarly consumption c > Ry
1−R that bounds the

sovereign’s choice set. Together these assumptions imply the value function is bounded by V = u(c)
1−β .

This also implies there is an upper bound −b = R
R−1(c − y) needed to finance the the maximum level

of consumption forever which bounds the sovereign’s saving.

The sovereign can decide to default on its debt obligation. We assume in order to avoid cumbersome

additional notation that in this case the sovereign is restricted to live in autarky forever.3 The overall

beginning of the period value after imposing the Markovian requirement that only payoff relevant variables

are included as state variables is given by

V (y , b) = max
{
V R(y , b),V A(y)

}
, (1)

where V R and V A corresponds to the value under repayment and default/autarky, respectively. The

value under financial autarky is then

V A(y) = u(y) + β

∫ y
y u(y ′) dFy

1− β
= u(y) + βv .

Conversely, if the sovereign decides to repay, it gets access to the market and can issue new long-term

debt. The value under repayment reads

V R(y , b) = max
b′

{
u
(
y − b + q(b′)

[
b′ − (1− λ)b

])
+ β

∫ y

y
V (y ′, b′) dFy

}
. (2)

Here, q(b′) is the price of one unit of debt when total debt is b′. The assumption of i .i .d . shocks and the

restriction to Markovian equilibria ensure that the only argument is the total amount of debt held next

period. The solution to this maximization problem gives the policy function b′ = h(y , b). In addition,

process is immediate.
3It is trivial to extend the defaulted state to a standard one where there is saving after the default and only temporary

exclusion from borrowing as is standard in the literature.
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we can define the default threshold as

d(b) = min
{
{y : V R(y , b) ≥ V A(y)} ∪ {y}

}
. (3)

This definition says that, for every debt level b, there is either a value of income equating repayment

and default, or there is no such value and d(b) = y . The i .i .d . assumption on the endowment process

leads to the default threshold being independent of income establishing that debt prices only depend on

the total amount of debt.

Additionally, define the debt threshold b∗∗ such that V R(y , b∗∗) = V A(y) and the current period

risk-free borrowing limit b∗ such that V R(y , b∗) = V A(y). Finally, define the repayment surplus as

S(y , b) = V R(y , b)− V A(y),

and the expected continuation surplus as

Z (b) =

∫ y

y
V (y , b)− V A(y) dFy =

∫ y

y
max {S(y , b), 0} dFy .

2.2 Equilibrium and Price

Because lenders are risk neutral and competitive, they break even in expectation. Hence, the price

of one unit of bond is

q(b′) = p

∫ y

y
I{

V R(y ′,b′)>V A(y ′)
} [

1 + (1− λ) q(b′′)
]
dFy ,

where I{
V R(y ′,b′)>V A(y ′)

} is the indicator function that takes value one if V R(y ′, b′) > V A(y ′) and

zero otherwise which confirms that the price only depends on b′. Given d(b) and h(y , b), the above

expression simplifies to

q(b′) = p
[
1− Fy (d(b

′))
]
+ p (1− λ)

∫ y

d(b′)
q
[
h(y ′, b′)

]
dFy . (4)

Since the debt repayment is laddered over multiple periods, the bond price accounts for the sovereign’s

future actions. Particularly, changes in the price due to d(b′) reflect default risk, while those due to

h(y ′, b′) reflect dilution risk. Dilution refers to the fact that the sovereign cannot commit not to borrow

more in the future. In other words, it cannot commit to maintain a constant default risk until maturity.

6



Given the definition of the bond price, we can define a Markov competitive equilibrium in this

environment.

Definition 1. A Markov competitive equilibrium in this environment consists of policy functions for

the sovereign’s consumption, c(y , b), bond holdings, h(y , b) and default, d(b) as well as a bond price

schedule q(b′) such that

1. Taking q(b′) as given, c(y , b), b′ = h(y , b) and d(b) solve the sovereign’s repayment problem in

(1)-(3).

2. q(b′) satisfies (4), meaning that it correctly reflects the default probability and is consistent with

zero expected profit.

The bond price admits a number of kinks or jumps which affect the bond policy function. To better

understand this, we can further restrict the level of borrowing by defining the all time risk-free debt limit

br ≤ b∗ as the largest level of borrowing where the sovereign receives the risk-free rate on debt. Then

for any b′ ∈ [b, br ] we have the dilution risk-free price:

q(b′) =
p

1− p(1− λ)
=

1

r + λ
.

So we can partition the space of borrowing into:

[b, b] = [b, br ] ∪ (br , b∗] ∪ (b∗, b],

where the first segment has neither default, nor dilution risk, the second has dilution risk, but no default

risk and the final has both default and dilution risk. This suggests there may be multiple points of

non-differentiability in the bond price function q(b) if br ̸= b∗.

The following proposition addresses these issues by showing that either the borrower enters the risk

borrowing region in which case br = 0, or it never enters in which case br = b∗.

Proposition 1 (Two Types of Equilibria). With low enough income, and outstanding debt b∗ > 0,

either (i) the sovereign finds it optimal to enter the risky borrowing region, i.e. h(y , b∗) > b∗, in which

case br = 0, or (ii) the sovereign never enters the risky borrowing region h(y , b∗) = b∗, in which case

br = b∗.

Proposition 1 establishes that there are two types of behavior in the decision problem. In the first,

the sovereign chooses to never exceed the risky debt limit, and so does not face a discount for dilution
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risk. In the second, the sovereign enters the risky borrowing region with positive probability, so all debt

levels have a discount for dilution risk.4

The points of non-differentiability br and b∗ have consequences for the optimal borrowing choice.

To the left of b = br , the sovereign is saving at rate 1
r+λ and to the right the sovereign is issuing debt at

q ≤ 1
r+λ which is either constant or decreasing in b′ ∈ [0, b∗] depending on whether there is default risk

– as shown in Proposition 1. This generates a jump in the bond policy function whose size is determined

by the decay rate λ. In the limit, as we return to the short-term debt case, λ → 1, the jump disappears.

Another possible jump in the bond policy function is at the risk-free borrowing limit, b∗, the conse-

quence of the sign reversal of h(y , b)− (1− λ)b. Levels of debt slightly smaller or larger than b∗ have

different impact on the sovereign’s marginal revenue. Particularly, we distinguish 3 cases:

1. Consider the case when h(y , b) approaches b∗ and b∗ > (1− λ)b. In this situation the sovereign

is issuing new debt and will choose to stay at b∗ for a while rather than incurring the reduction of

the price of debt issuance that occurs when the default becomes possible.

2. Alternatively, consider the case where as (1 − λ)b approaches b∗ we have that h(b, y) < b∗. In

this case the sovereign is purchasing some of its outstanding debt. Purchasing a little bit more will

imply a sudden reduction in its price, inducing the sovereign to jump in its choice and buy even

more.

3. Finally, if b∗ = h[(1− λ)b∗, y ] then the sovereign experiences neither a capital gain nor a capital

loss. There is therefore no value of staying at or jumping over b∗ and the function is indeed

continuous.

The jump in the bond policy reflects the kink in the price function q(b′) at b′ = b∗ whereby the

derivative of q(b′) drops discretely. In situations where choosing b′ = b∗ means the agent is buying

back debt, that is b′ − (1 − λ)b < 0, there is therefore a discrete upward shift in the valuation of the

marginal utility to borrowing as represented by the term qb(b
′)(b′−(1−λ)b) in the first-order condition.

Intuitively, the sudden faster reduction in the price of debt at this b′ raises the marginal value of being

in debt above b∗ since it makes it cheaper to buy it back.

In what follows, we get rid of these points of non-differentiability in the bond price. In Section 3, we

introduce utility shocks to eliminate the threshold b∗.

4A natural question to ask is whether these are unique equilibria for economies with different primitives, or whether
there is multiplicity and these two types coexist. Aguiar and Amador (2020) have argued the latter is true in a closely
related model. Below we show that, by restricting ourselves to equilbria that are the limit of those of economies with finite
horizons, equilibria are unique.
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3 The Model with Extreme Value Shocks

We introduce extreme value shocks to the value of defaulting and not defaulting. More precisely,

the sovereign receives additive utility shocks ϵ =
(
ϵR , ϵA

)
, after the endowment y is realized, to the

value of repayment and default, respectively. Assume these taste shocks are Type 1 Extreme Value (i.e.

Gumbel). Furthermore, the shocks have the property that the expected value of the maximum of the

two shocks is zero i.e. the location parameter is −α(γ+ ln 2), where γ ≈ 0.57 is the Euler-Mascheroni’s

constant, and α is the scale parameter.5 The beginning of the period’s value is given by

V (y , b, ϵ) = max

{
V R(y , b) + ϵR ,V A(y) + ϵA

}
.

Given the assumed distribution of
(
ϵR , ϵA

)
, the ex-post probability of repayment, ϕ(y , b), is given by the

logit form

ϕ(y , b) =
eV

R(y ,b)/α

eV R(y ,b)/α + eV A(y)/α
. (5)

This is the key advantage of using extreme value shocks. Previously, the repayment decision was binary,

while here it is a continuous probability. This eliminates the two thresholds b∗ and b∗∗ and therefore

removes one source of non-differentiability in the bond price. Given this, we can re-partition the space

of borrowing into:

[b, b] = [b, br ] ∪ (br , b], (6)

Further, note that under the extreme value assumption, we can define

G (y , b) =

∫
ϵ
V (y , b, ϵ) dFϵ = α ln

(
eV

R(y ,b)/α + eV
A(y)/α

)
− α ln(2).

Note that because there are two sets of random variables, the endowment and the extreme value shocks,

we index the probability measures by the variables that they refer to, Fϵ or Fy . Moreover we have,6

ϕ(y , b) = GR(y , b).

Where GR is the derivative of G with respect to the value V R . In addition, define χ(b) =
∫
y ϕ(y , b) dFy

as the ex-ante repayment probability, and W (b) =
∫
y G (y , b) dFy as the expected continuation value

5This choice of mean ensures that the option to default does not yield any ex-ante utility or disutility.
6This is true for a more general class of taste shocks than Gumbel. See Rust (1988).

9



for a sovereign in good standing. The values under financial autarky and under repayment as well as the

repayment surplus are the same as in Section 2. Also, Z (b) = W (b)−
∫
y V

A(y) dFy . Finally, given the

definition of the repayment probability, the price of one unit of bond reads

q(b′) = p χ(b′) + p(1− λ)

∫ y

y
ϕ(y ′, b′) q

[
h(y ′, b′)

]
dFy . (7)

Note that, with arbitrary low values of α, the problem derived in this section converges to the one posed

in Section 2:

Proposition 2 (Zero Extreme Value Shock). As α → 0, the decision problem converges to the one

presented in Section 2.

4 The Limit of Finite Horizon Economies

We turn to characterize the sovereign’s problem under a finite horizon (Section 4.1) and take limits as

the horizon becomes infinity (Section 4.2). This will reward us with two results: existence and uniqueness

of the equilibrium.

4.1 Decision under Finite Horizon

Consider an environment like that in Section 3 with the exception that the sovereign and the com-

petitive lenders trade long-term debt contracts for a finite number of T < ∞ periods which implies that

in period T there is no trade in bonds.

Given this, in period T , the beginning of the period’s value is given by

VT (y , b, ϵ) = max

{
u(y − b) + ϵR , u(y) + ϵA

}
.

The borrower does not necessarily defaults on all its debt. This depends on the exact realization of(
ϵR , ϵA

)
. Conversely, in period T − 1, the value of repayment is given by

V R
T−1(y , b) = max

b′

{
u
(
y − b + qT−1(b

′)
[
b′ − (1− λ)b

])
+ β

∫ y

y

∫
ϵ
VT (y

′, b′, ϵ′) dFϵ(ϵ
′) dFy (y

′)

}
,

and the value of autarky reads

V A
T−1(y) = u(y) + β

∫ y

y
V A
T (y ′)dFy (y

′),
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where V A
T (y ′) = u(y ′). From this, the definition of the values in period t < T − 1 is straightforward.

Bonds depreciate at rate λ and pay a coupon of one unit per outstanding unit of debt until time T .

This means that, at time T − 1, all bonds issued are one period. Thus, the bond price for b ≤ 0 in

T − 1 is given by

qT−1(b) = p̄,

while for t < T − 1,

qt(b) = p̄
T−t−1∑
k=0

(p̄(1− λ))k = qt+1(b) + (p̄(1− λ))T−t+1 .

That is the price of saving is increasing in the number of periods the bond will be paid out. In the limit,

the price of saving is 1
r+λ . Conversely, for b > 0, in period T − 1, the bond price is given by

qT−1(b) = p χT (b),

which corresponds to the standard pricing formula for a one-period bond with the ex-ante repayment

probability defined as χt(b) =
∫
ϕt(y , b)dFy (y) =

∫
eV

R
t (y ,b)/α

eV
R
t (y ,b)/α+eV

A
t (y)/α

dFy (y). For any t < T − 1, then

qt(b) = p χt+1(b) + p(1− λ)

∫ y

y
ϕt+1(y

′, b′) qt+1

[
ht+1(y

′, b′)
]
dFy .

By comparing the bond price, the bond policy and the different values over time, there are a number of

properties we would like to establish for general t and t + 1. These properties should ultimately show

the sequence of policies, value functions, and prices have a unique limit. This is the purpose of the next

section.

4.2 Monotonicity and Limit of Finite Horizon

To later show that the limit of the decision problem as T → ∞ exists and is unique, we first need

to show that the main value functions and prices are monotonic over y , b and t:

Proposition 3 (Monotonicity). In the above environment with T < ∞,

1. Values and Decision Rules across States For all t,

1.1 V R
t (y , b) is strictly increasing in y and strictly decreasing in b.

1.2 Wt(b) is non-increasing in b.
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1.3 χt(b) is non-increasing in b.

1.4 If qt(b
′) is non-increasing in b′, ht(y , b) is non-increasing in y and non-decreasing in b.

2. Debt Prices across Sates: For all t, qt(b) is non-increasing in b.

3. Values and Default over Time: If qt(b) ≥ qt+1(b), for all t < T and all (y , b),

3.1 St(y , b) ≥ St+1(y , b).

3.2 Zt(b) ≥ Zt+1(b).

3.3 χt(b) ≥ χt+1(b).

4. Debt Prices over Time: For all t < T, qt(b) ≥ qt+1(b).

The first two parts of the proposition show monotonicity of the value of repayment in (y , b) and

of the continuation value, the repayment probability and the bond price in b for a given t. The proofs

follow standard arguments. However, one cannot say anything about the monotonicity of consumption.

The first reason is that h(y , b) − (1 − λ)b can be either positive (i.e. debt accumulation) or negative

(i.e. debt buyback). The second reason is that the budget set is not necessarily convex as we see in the

next section.

The third part of the proposition states that, under the assumption that the borrowing terms improve

as the horizon gets further away, the surplus of repayment and the continuation surplus are increasing,

whereas the default probability is decreasing as one approaches the beginning of time in a given state

(y , b).7 However, we cannot say anything about the monotonicity of consumption and the bond policy

in t. These results naturally follow from the fact that better prices and a longer horizon (which increases

the option value of borrowing) improve the state of the sovereign inducing larger values.

The last part of the proposition states that the borrowing terms are indeed worsening as one ap-

proaches T . This follows from fact that the repayment surplus shrinks because the opportunities for

further borrowing are decreasing. While intuitive, this result is not trivial to prove. The default risk for

any state (b, y) is decreasing with the horizon of the problem, whereas the part of the debt price dealing

with dilution risk is not obvious. We cannot say anything about the monotonicity of the borrowing policy

ht in time, as borrowing may increase or decrease in response to better prices qt ≥ qt+1. Instead, we

prove the choices of bonds leading to higher dilution risk are not optimal. Intuitively, for a given state

7It can be shown that V R
t (y , b) > V R

t+1(y , b) and V A
t (y) > V A

t+1(y) for all t < T and all (y , b) under the additional
assumption that u(c) > 0 where c is the lowest level of consumption achieved in equilibrium by adding a suitable large
positive constant to the utility function.
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(y , b) it is never optimal for a borrower to move farther up the borrowing Laffer curve at date t, than

at date t + 1. Doing so leads to too much consumption today, and the borrower could reduce their

borrowing and be better off. This shows that qt+1(b) > qt(b) as a result of both lower default, and

lower dilution risk as the horizon increases.

Note that proposition 3 holds without taste shocks. All the proofs apply to the decision problem in

Section 2 upon suitable re-definition of values and the default set. As we will see in the next section when

we derive the GEE, the taste shocks ensure convexity of the decision problem and differentiability of the

main policy functions. They are not necessary for the monotonicity of the price, the value functions or

the repayment probability.

It is straightforward to show that, for a given price function q(b′) the sovereign’s problem is a

contraction, and the problem is continuous in q(b′). This implies that if qt(b
′) → q∗(b′) as the horizon

of the problem increases to infinity, then the solution to the limiting economy is simply the sovereign’s

problem with the price taken to be q∗(b′). So the question becomes does such a limiting price q∗(b′)

exist for the finite horizon problem?

The answer is affirmative if qt ≥ qt+1 as this is a sequence of nonincreasing (in b′) and bounded

functions, it must converge uniformly to some limiting q∗. Hence, given Proposition 3, we can show

that the limit of the decision problem under finite horizon exists and is unique through the fixed point

theorem of monotone operators in Stokey et al. (1989). Given this definition and the monotonicity of

the repayment surplus S(y , b) shown in Proposition 3, we come up with the following proposition

Proposition 4 (Existence and Uniqueness). Let q∗ be the limiting price function of the finite horizon

problem, and Ω = [y , y ] × [b, b] be the state space. For a function S : Ω → R defined as S(y , b) =

V R(y , b)− V A(y), define the operator (KS)(Ω; q∗) as:

(KS)(y , b; q∗) =sup
b′

{
u(y − b + q∗(b′)[b′ − (1− λ)b])− u(y) + β

∫ y

y
max

{
S
(
y ′, b′; q∗

)
, 0
}
dFy

(
y ′
)}

.

Then (i) the limit of the finite horizon problem is the fixed point of K given by S(y , b; q∗), and (ii) this

fixed point exists and is unique.

Proposition 4 states that in this environment, there is a unique equilibrium that is the limit of the

equilibrium of economies with finite horizons. This unique equilibrium is a Markov equilibrium consistent

with Definition 1. In other words, we rule out Markov-like equilibria that could be sustained by means

of trigger strategies. In light of this, it seems that the multiplicity uncovered by Aguiar and Amador

13



(2020) might be due to all but one of those equilibria not being the limit of those of finite economies.

5 The Generalized Euler Equation

Having shown existence and uniqueness, we now characterize the decision problem through the

generalized Euler Equation (GEE), that is the Euler equation which includes the derivative of bond

prices, and through them the derivatives of future actions with respect to current actions.

5.1 Obtaining the Generalized Euler Equation

The GEE provides an important analytical tool to characterize the decision of the sovereign in cases

where default occurs (in economies where there is no default the standard Euler equation applies). How-

ever, its derivation requires the bond price q(b), the bond policy h(y , b), and the repayment probability

ϕ(y , b) to be differentiable in b. At this stage, we proceed by assuming that they are indeed differentiable

in the interior of the two regions in (6) and we will turn to prove it below in Section 5.2.

Besides differentiability, the statement that the GEE is a sufficient condition for optimality requires

that the decision problem is convex. This is important as Chatterjee and Eyigungor (2012) show that

the budget set under repayment is not necessarily convex. Without convexity, the first-order conditions

are necessary but not sufficient. Concretely, there might be multiple local maxima in the GEE which

difficults the use of such analytical tool to characterize the equilibrium outcome. Hence, we assume that

the scale parameter α is sufficiently large to ensure convexity of the problem. We discuss this assumption

in Section 5.2. If the scale parameter α is not sufficiently large to ensure convexity the GEE still exists

but will typically have more than one solution only one of which will be the global optimum. The GEE

can still be used to characterize (and compute) the solution but we also have to keep track of the implied

values to find out which of the solutions yields the global maximum.

Given the convexity of the problem and the differentiability of q(b), h(y , b) and ϕ(y , b), we can take

the first-order condition of Equation (2) with respect to b′,

uc(C(y , b, b′|q))
[
q(b′) + qb(b

′) (b′ − (1− λ)b)
]
=

β

∫ y

y
ϕ(y ′, b′) uc(C(y ′, b′, h(y ′, b′)|q)) [1 + (1− λ) q(h(y ′, b′))] dFy ,

where C(y , b, b′|q) ≡ y−b+q(b′)(b′−(1−λ)b) corresponds to consumption today and C(y ′, b′, h(y ′, b′)|q)

to consumption tomorrow. This notation makes explicit the functional dependencies. In addition, qb(b
′)

is the derivative of the bond price with respect to b′. The left-hand side of the above expression rep-

14



resents the marginal benefit of one additional unit of debt while the right-hand side corresponds to

the marginal cost. The marginal benefit is the consumption gain from marginal borrowing taking into

account the impact it has on the price of the debt. The marginal cost of an additional unit of borrowing

is the expected marginal utility loss of paying the coupon and rolling over unmatured debt at tomorrow’s

price in repayment states.

For a given state (y , b) and borrowing b′, the first-order condition contains the functions ϕ, h, q and

qb. Since we seek a GEE that involves decision rules only, and not equilibrium price functions, one step

is the substitution of the price derivative qb. Taking the first derivative of the price of debt as described

in Equation (7) gives

qb(b
′) =p(1− λ)

∫ y

y
ϕ(y ′, b′) qb

[
h(y ′, b′)

]
hb(y

′, b′) dFy (8)

+ p

∫ y

y
ϕb(y

′, b′)
[
1 + (1− λ) q(h(y ′, b′))

]
dFy .

where hb(y
′, b′) and ϕb(y

′, b′) denote the first derivative of the bond policy and the default function,

respectively. The first term with the integral is the dilution risk, while the second term gives the loss of

value per unit of debt weighted by the marginal probability of default. The dilution term of the price

derivative is therefore itself represented by the future price derivatives qb(h(y
′, b′)). In fact, we can use

the value of qb implied by the first-order condition to get an expression that does not depend on future

derivatives. Inverting the first-order condition, in an equilibrium where b′ = h(y , b), we can write the

price derivatives as qb(h(y , b)) = B(y , b|h,ϕ, q) where B is a known expression given by

B(y , b|h,ϕ, q) =

∫ y
y ϕ(y ′, h(y , b)) uc(c

′) [1 + (1− λ)q(h(y ′, h(y , b)))] dF − uc(c)q(h(y , b))

uc(c) [h(y , b)− (1− λ)b]
, (9)

with c = C(y , b, h(y , b)|q) and c ′ = C[y ′, h(y , b), h(y ′, h(y , b))|q].

Since the present self assumes equilibrium in future, the future derivatives can analogously be ex-

pressed so that qb(h(y
′, b′)) = B(y ′, b′|h,ϕ, q), and the current price derivative, as a function of b′,

becomes

qb(b
′) = p(1− λ)

∫ y

y
ϕ(y ′, b′) B(y ′, b′|h,ϕ, q) hb(y ′, b′) dFy

+ p

∫ y

y
ϕb(y

′, b′)
[
1 + (1− λ) q(h(y ′, b′))

]
dFy .
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Combining the above expressions gives the GEE. Formally,

uc(c)

[
q(b′) + (b′ − (1− λ)b)

{
p(1− λ)

∫ y

y
ϕ(y ′, b′) B(y ′, b′|h,ϕ, q) hb(y ′, b′) dFy

+ p

∫ y

y
ϕb(y

′, b′) [1 + (1− λ) q(h(y ′, b′))] dFy

}]

= β

∫ y

y
ϕ(y ′, b′) uc(c

′) [1 + (1− λ) q(h(y ′, b′))] dFy . (GEE)

with c = C(y , b, h(y , b)|q) and c ′ = C[y ′, h(y , b), h(y ′, h(y , b))|q].

The (GEE) still contains the price function q. Yet Equation (7) fully characterises that price function

q for given decision rules ϕ and h. Note then how substituting q from (GEE) yields a formula that is

only a function of current and future decision rules without any need of involving markets. It is then

a characterization that only involves the game against future selves, albeit all future decision rules, so

using the pricing function q provides a convenient way to simplify notation.

Based on our previous discussion around (6), there are two distinct regions for the solution of b′.

First, in points such that b′ < 0, there is no default risk as the sovereign can only repudiate debt (i.e.

b′ > 0). Thus, in such points, the optimal borrowing is the solution to the standard Euler equation

uc(c) q(b
′) = β

∫ y

y
uc(c

′) [1 + (1− λ) q(h(y ′, b′))] dFy . (EE)

with c = C(y , b, h(y , b)|q) and c ′ = C[y ′, h(y , b), h(y ′, h(y , b))|q].

Second, in points such that b′ > 0, there is both dilution and default risk meaning that the optimal

borrowing is the solution to (GEE). The GEE therefore enables a complete characterization of the

sovereign’s interior borrowing choice. When b′ > 0, the borrowing policy solves (GEE) and there is both

dilution and default risk. When b′ < 0, the borrowing policy solves the standard Euler equation (EE). If

none of those conditions are met, then the borrowing is a corner solution at b′ = 0.8

8Without extreme value shocks, we have three regions given the threshold value b∗. More precisely, in points such that
b′ < 0, the optimal borrowing is the solution to the EE. In points such that b′ ∈ (0, b∗), the optimal borrowing is the
solution to the GEE with dilution risk and without default risk. Finally, in points such that b′ > b∗, the optimal borrowing
is the solution to the GEE with both dilution and default risk. There are further two corner solution, b′ = 0 and b′ = b∗

where the GEE is not satisfied.
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5.2 Convexity and Differentiability

The use of the GEE as a sufficient condition to characterize optimality critically depends on two

elements: the convexity of the decision problem and the differentiability of q, ϕ and h. We first

investigate the former.

The first-order conditions are sufficient for a maximum under a concave objective function and a

convex budget set. The introduction of extreme value shocks addresses the issue of non-convexities

as it allows agents to randomize over decisions. In each b > 0, there is always a positive probability

that the default option is chosen. Such probability distribution can convexify the decision problem.

Nevertheless, the mere introduction of randomization is usually not sufficient and one needs to ensure

that randomization is intense enough.9

The size of the scale parameter α is therefore critical in ensuring convexity. As α → 0, we return

to the case studied in Section 2. That is, the probability of defaulting is becoming degenerate. As a

result, small changes in the bond prices can lead to large changes in the borrowing decision. In other

words, as α gets closer to zero, randomization vanishes and non convexities prevent the use of the GEE.

In contrast, as α → ∞, then the probability of defaulting approaches 0.5 in every state in which b > 0.

In this case, the decision problem becomes convex as we show in the following proposition.

Proposition 5 (Convexity). If α is sufficiently large, then the decision problem is convex.

Regarding differentiability, as already said, there are two forms of discontinuity: kinks and jumps.

Kinks are not an issue as integration over kinks preserve not only continuity but also differentiability. In

contrast, jump discontinuities are problematic as the integral is continuous but not differentiable at this

point. We got rid of potential jumps at b∗ with the continuous repayment probability obtained with

extreme value shocks. We further rule out jumps at zero debt by restricting our attention to the case in

which b ≥ 0.

With long-term debt, the bond price depends on the optimal policy h, so differentiability of the bond

price has to be established recursively through the finite horizon problem presented in Section 4.

Proposition 6 (Smoothness). If b ≥ 0, ϕ, h and q are of class C∞ almost everywhere.

The proposition relies on an inductive argument. At time T , the bond policy function is a constant.

Hence, it is obviously of class C∞. Given this, at time T − 1, we can show that the GEE is itself of

class C∞ except for a discontinuity at zero. By application of the implicit function theorem, the bond

9See also the discussion in Iskhakov et al. (2017).
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policy at T − 1 inherits the properties of the GEE. That is, it is smooth except for a discontinuity at

zero. Given this property of the bond policy, we can show that the bond price at T − 2 is also of class

C∞ almost everywhere. We then repeat this argument backward until t = 0.

The fact that we rely on C∞ is crucial as the proof works recursively through the finite horizon

problem. If for some 0 < t < T , the bond policy function ht were of class Ck for k < ∞, then ht−1

would be of class Ck−1 since the GEE at time t − 1 depends on hb,t which is of class Ck−1. Hence,

if k < ∞, one loses one degree of differentiability for each iteration. This could eventually prevent to

show that ϕ, h and q are differentiable.

Once the differentiability of ϕ, h and q has been established, we need to show that the derivatives

converge to the appropriate policies.

Proposition 7 (Limiting Bond Policy). The bond policy function, ht , converges pointwise to a function

h and the derivative of the bond policy function, hb,t , converges pointwise to hb = d
dbh.

For the bond policy function, the argument is the following. On the one hand, the application of the

implicit function theorem enables to characterize the bond policy, h, directly from the GEE. Especially,

it states where for a given t there is a unique implicit function, ht , of the same differentiability class as

of the GEE at t. Moreover, real limits are unique when they exist meaning that ht,b = d
dbht is unique

as well. On the other hand, the GEE evaluated at the optimal borrowing converges pointwise to zero in

every t. This gives sequences of {hn} and {hb,n} which converge by construction.

Given Proposition 7, we can additionally show the convergence of the bond price. The argument

follows from the fact that given hn and hb,n, the bond price and its derivative are a contraction.

Proposition 8 (Limiting Bond Price). Let {qn} and {qb,n} denote the sequence of bond price and its

derivative. qn converges uniformly to q∗ and qb,n converges uniformly to q∗b, implying that q∗b = d
dbq

∗.

6 Computation

We now describe briefly the advantages that our characterization of the GEE provides when it turns

to solve the model computationally. There are three reasons that give an advantage. The use of policy

function iterations because we can use first order conditions, the natural way that this allows us to

interpolate in between states and actions and, for the particular case of risk aversion of two, the fact

that the use of the endogenous grid method allows to avoid the use of root finding to solve a nonlinear

equation. This is because, given the lack of characterizations of the first order conditions in the literature,
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this model is almost always solved via discretization of the state and action space using value function

iteration methods.10

6.1 Methods

The solution method commonly referred to as value function iteration (VFI) uses the following set

of functional equations

h(b, y) = argmax
b′

{
u
[
y − b + q(b′) (1− (1− λ)b)

]
+ β W

(
b′
)}

, (10)

V R(b, y) = u [y − b + q(h(b, y))(h(b, y)− (1− λ)b)] + β W (h(b, y)) , (11)

W (b′) =

∫
α log(eV

R(b′,y ′)/α) + eV
A(y ′)/α) dFy

(
y ′
)
, (12)

q
(
b′
)
= p̄

∫
ϕ
(
b′, y ′

) [
1 + (1− λ) q

(
h(b′, y ′)

)]
dFy

(
y ′
)
, (13)

ϕ(b, y) =
eV

R(b′,y ′)/α

eV R(b′,y ′)/α + eV A(y ′)/α
. (14)

The left hand side of this system is also the set of unknown functions, {h,V R ,W , q,ϕ}. This is solved

by discretizing both the state and the action space transforming this problem in one of finite dimension,

and it is typically solved by iterations from the future to the present although it is not necessary. Yet,

accuracy requires a large number of points in the grid for debt holding to avoid the solutions being the

result of rounding rather than of maximizing.

Methods described as policy function iteration (PI) use first order conditions, which in our case imply

the GEE. They do not typically operate via discretizing the state or the choice set. These methods use

Equations (11) to (14) but not Equation (10) and add four additional functional equations:

0 = uc [y − b + q(h(b, y))(1− (1− λ)b)] [q (h(b, y))+

qb [h(b, y)] [h(b, y)− (1− λ)b]] + βWb [h(b, y)] , (15)

Wb(b) = −
∫

ϕ(b, y) uc [y − b + q(h(b, y))(1− (1− λ)b)] dFy (y), (16)

10There are exceptions. Jang and Lee (2021) also use the Endogenous Grid Method for a sovereign default problem with
short term debt. They seem to implicitly assume differentiability. Kiiashko and Maliar (2021) in independent preliminary
work use the Endogenous Grid Method with long term debt. They add an i.i.d. normal shock to the value of default, and
then they compute numerically the derivatives of both the value function and the pricing function, which may solve the
problems that we highlight in this paper. There is no information on the extent to which this strategy works. The numerical
computation of the derivatives of the expected value function avoids using the information that our characterization of the
GEE allows.
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qb(b) = p̄

∫
ϕb(b, y) {1 + (1− λ)q[h(b, y)]} dFy (y)+

p̄(1− λ)

∫
ϕ(b, y) qb[h(b, y)] hb(b, y) dFy (y), (17)

ϕb(b, y) = − 1

α
uc [y − b + q(h(b, y))(1− (1− λ)b)]

{1 + (1− λ) q[h(b, y)]} ϕ(b, y) [1− ϕ(b, y)] . (18)

There are four additional unknowns, {qb,Wb,ϕb, hb}. This makes for a total of 8 functional equations

but 9 unknown functions. Of these, the derivative of the borrowing policy hb has no analytic expression

in terms of the remaining equilibrium objects. We can however, approximate hb using finite differences

in particular grid points. That is, for bi in the grid

hb(bi , yj) ≈
h(bi+1, yj)− h(bi−1, yj)

2∆b
, 1 < i < Nb,

hb(bi , yj) ≈
h(bi , yj)− h(bi−1, yj)

∆b
, i = Nb,

hb(bi , yj) ≈
h(bi+1, yj)− h(bi , yj)

∆b
, i = 1.

The monotonicity of the borrowing policy b′ = h(b, y) implies that h is invertible in b′, i.e. there

exists a function b = g(b′, y) which provides a theoretical justification for the use of the Endogenous

Grid Method in computing the solution to the problem.

In general solving the GEE (Equation (15)) for b′ requires a numerical solver. In standard models

without time inconsistency, the intertemporal Euler equation can be solved using the endogenous grid

method which achieves large speed gains. In our case this is not true in general because of the terms

involving derivatives of decision rules. However, in the case of CRRA utility with a risk aversion of 2, we

can use it because consumption can be obtained as the solution to a second order polynomial.11 Policy

11Using the budget constraint to solve for b gives b = y+q(b′)b′−c
1+(1−λ)q(b′) , and substituting this expression into the GEE and

rearranging yields

βWb(b
′)c2 + (1− β)

qb(b
′)(1− λ)

1 + (1− λ)q(b′)
c + (1− β)

{(
q(b′) + qb(b

′)b′ − (1− λ)qb(b
′)

[
y + q(b′)b′

1 + (1− λ)q(b′)

])}
= 0, (19)

which is a quadratic equation for c. The solution is given by

c =
−a2 ±

√
a22 − 4a1a3
2a1

,

a1 = βWb(b
′) < 0,

a2 = (1− β)
qb(b

′)(1− λ)

1 + (1− λ)q(b′)
< 0,
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function iteration methods are also typically solved by iterating from the future (like taking the finite

horizon problem up to infinity).

We compare heuristically the computational properties of four methods: (i) Value function iteration

without taste shocks, (ii) Value function iteration with taste shocks, (iii) Policy function iteration with

taste shocks, and (iv) Policy function iteration using the endogenous grid method with taste shocks.

We do so by means of a generic example: Utility is CRRA u(c) = (1 − β) c
1−σ

1−σ with σ = 2. The risk

free rate is r = 0.04. The discount factor is β = 0.92. The bond maturity parameter is λ = 0.1. The

taste shock parameter is α = 0.01. The choice of the taste shock balances a desire for smoothness and

concavity (larger shock) with a solution that is close to the model without taste shocks (α = 0). Income

is discretized into a grid of Ny equally spaced points Y = {y1, y2, ... , yNy } with corresponding probability

mass function πj . Ny = 41 and y ∼ U[1 − γ, 1 + γ]. The parameter γ is chosen based on its relation

to the volatility of income σy =
√
3γ, and σy = 0.35.

Both value function iteration methods (with and without extreme value shocks) require discretization

of the state and choice spaces. To this end, we set bond holdings to be in an equally spaced grid for

borrowing {b1, b2, ... , bNb
} with b1 = 0 and bNy = 0.25. To minimize the effect of discretization errors

we use a large Nb = 1500 and the choice of b′ is also forced to lie in the grid. When solving using

VFI we use the monotonicity property of the borrowing policy to limit the choice set of b′ to decrease

computational time. Policy iteration allows for not making choices in the grid, so fewer points are

required. For the two policy iteration methods, we set Nb = 101. Using values and derivatives of

prices q, expected utilities W , saving functions h (recall that for the later we obtain and derivatives

by numerical differentiation) we interpolate outside the grid via the construction of piecewise Hermitian

cubic polynomials which match the level and first derivative of the function at every grid point. S: Note

that the endogenous grid method needs a grid for b and b′. Nb is the number of grid points for b and

Nb′ is the number of grid points for b′. We invert h(y , b) = b′ to get g(y , b′) = b, and solve for b given

(b′, y) using this relation. This gives a set of b that we interpolate onto the Nb grid. Generally choosing

Nb′ > Nb is necessary for an accurate solution. Thus, we use a grid of Nb′ = 500 equally spaced points

a3 = (1− β)

{
q(b′) + qb(b

′)b′ − (1− λ)qb(b
′)

[
y + q(b′)b′

1 + (1− λ)q(b′)

]}
> 0.

Note there are possibly two roots to this equation, however, we know it is optimal to choose the highest level of c, and
given that

√
a22 − 4a1a3 > a2 and a1 < 0, the solution must be

c =
−a2 −

√
a22 − 4a1a3
2a1

.
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over the same interval covered by B.

6.2 Accuracy and Speed

Figure 1 displays the convergence properties by showing the errors in successive iterations in the sup

norm. The first thing to note is that without taste shocks value function iteration did not converge with

the grid chosen. Second, even with taste shocks convergence of value function iteration is relatively poor,

its precision (the error in subsequent iterations) is limited to 10−3 in price and 10−2 in values. Policy

iterations either with or without taking advantage of the endogenous grid method are much more precise

yielding differences in subsequent iterates that are close to machine precision after 1000 iterations.

Figure 1: log10 errors of the price function and the value of repayment after successive iterations of each
algorithm.

The real advantage of policy iteration methods is computational time. In our example, using value

function iteration with(without) extreme value shocks took 5.17(4.45) minutes to make 1000 iterations

and the errors stabilized well above standard thresholds for convergence. Using policy iteration with a

numerical root finder took 6.32 minutes to make 1000 iterations, and both the price and value functions

converged with respect to a tolerance of 10−6 in 3.03 minutes. Finally, when the endogenous grid method

was used, the computing time dropped to 4.03 seconds to make 1000 iterations, and the price and value

functions converged with respect to a tolerance of 10−6 in 1.63 seconds, reflecting the additional gains

in speed from avoiding numerical root-finding.
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6.3 Convexity with Extreme Value Shocks

The use of first order conditions methods like the GEE relies on the concavity of the objective function

and convexity of the choice set. Violation of these conditions arise when the sovereign has accumulated

large level of debt, and then receives a good endowment realization. In the limiting case with α = 0

there is a kink in the Laffer curve at the risk-free debt limit b∗, which leads the possibility of two points

where the GEE is satisfied, one below b∗ and another above. From Proposition 5 we know that a

sufficiently large extreme value shocks convexifies the problem, but it is a quantitative question how

large the shock needs to be in practice. Figure 2 shows this possibility of multiple local maxima (with

one global maximum) can happen with extreme values shocks when the shock is very small. However,

we can see the size of the shock necessary to rule out multiple local solutions is in this case as small as

α = 0.01 meaning using the GEE is a valid computational approach for a model that is very close to the

limiting case α = 0.12

b' b' b'

Figure 2: Plots of the objective function u(c)+βW (b′) as a function of the choice b′ for differing levels
of taste shocks.

If the scale parameter α is not sufficiently large to ensure convexity the GEE still exists but will typically

have more than one solution. With multiple solutions, we need to keep track of the value function to

pick the global optimum. Because the multiple solution arises from the possibility of buybacks, there are

at most two local maxima. This suggests a simple root-finding algorithm in which we start at low and

high guesses of b′. If the two guesses lead to the same solution, we are fine. Otherwise, we simply pick

the better one with the value function. With more than two local maxima, we need to take multiple

guesses and evaluate them all with the value function.

12Figure 2 shows the objective for a particular point in the state space, but we have verified α = 0.01 is sufficient to rule
out multiple local optima at all points in the state space.
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6.4 Decomposing the GEE Numerically

We now describe the behavior of the sovereign and the role of the different terms in the GEE in

determining the marginal value of borrowing.

First, Figure 3 shows the decision rules of the sovereign and corresponding debt price at all points in

the state space. From the bottom-left panel, we see when the sovereign enters the risky borrowing region

they face a sharp decline in the price of their debt. The borrowing policy b′ = h(y , b) is monotone in

both y and b, and we see when the sovereign has accumulated large levels of debt, a positive endowment

realization leads to sharp reductions in borrowing. This can be seen in the ridge that forms in the buyback

b′−(1−λ)b. This reduction in debt leads to higher debt prices which means the sovereign may optimally

choose lower levels of consumption at higher endowment realizations for a given level of debt. We see

this non-monotonicity in consumption in the top-left panel of Figure 3. Non monotonic consumption

occurs where b′ < (1 − λ)b when debt is high b > b∗, and the policy is discontinuous (without EV

shocks) as the borrower exits the borrowing region by jumping down. With EV shocks this is no longer

a jump, but a steep slope in the borrowing policy. This means consumption is lower as the borrower is

paying a high price to buy back its debt and exits the risky borrowing region.

Figure 3: Policy functions evaluated at all points (y , b) in the state space.
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To understand the forces that shape the optimal choices of the sovereign, we plot the left-hand

side of the GEE in Figure 4. Recall from Equation (8) the derivative of the debt price is the sum

of the dilution risk and default risk terms. The top-left panel shows the marginal value of borrowing

–the first term of the right hand side of Equation (15)– which is highest near the boundary of the

risky-borrowing region. The next three panels decompose the marginal value of borrowing into (i) the

marginal utility ignoring the derivative of the debt price uc(c)q(b
′), (ii) the marginal utility accounting

for default risk uc(c)(b
′ − (1 − λ)b)qdefb (b′), and (iii) the marginal utility accounting for dilution risk

uc(c)(b
′ − (1 − λ)b)qdilb (b′). First, in the absence of the effects of the price derivative uc(c)q(b

′),

the marginal utility of consumption is high when debt is high and the endowment is low, and there is

incentive for the sovereign to increase borrowing. Second, the effects of the price derivative in terms of

default and dilution discipline the sovereign into borrowing less, which we can see in the bottom two

panels, where the marginal revenue from addition borrowing becomes negative. Third, the disciplining

effects of the price derivative are mainly coming through the discount for default risk. The effects of

default risk are at least twice as large as dilution risk when the sovereign is in the risky borrowing region.
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Figure 4: Decomposition of the left hand side of the Generalized Euler Equation into its individual
components evaluated at all points (y , b) in the state space.

7 Conclusion

In this paper we have characterized the solution to the sovereign default problem with long term

debt. We have used the GEE to describe how default risk and dilution risk shape the decision. Further,

we have documented the existence of a kink in the pricing function where default risk starts that results

in violation of the GEE to characterize the solution and that, depending on the size of existing debt,

may result in the decision being held constant for a variety of states or in a jump of debt issuance.

Adding noise to the decisions, in our case in the form of extreme value shocks, eliminates the kinks

in the pricing function and convexify the decision problem yielding a GEE with default and dilution

risk everywhere to characterize the solution. In addition, we have shown that the equilibrium of finite

economies is unique and that it converges to our solution as the number of periods goes to infinite

showing uniqueness of equilibria when we require the equilibrium not only to be Markovian but to be

the limit of finite economies. Finally we have shown by means of an example the enormous gains in

accuracy and speed obtained by using policy function iteration methods that take advantage of the GEE
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that we have derived. We hope that this paper ends the nature of black box solution methods that are

used to deal with economies with sovereign default.

References

Aguiar, Mark and Gita Gopinath, “Defaultable Debt, Interest Rates and the Current Account,” Journal of International

Economics, 2006, 69 (1), 64–83.

and Manuel Amador, “Self-Fulfilling Debt Dilution: Maturity and Multiplicity in Debt Models,” American Economic

Review, September 2020, 110 (9), 2783–2818.

, , Hugo Hopenhayn, and Iván Werning, “Take the Short Route: Equilibrium Default and Debt Maturity,” Econo-

metrica, March 2019, 87 (2), 423–462.

Arellano, Cristina, “Default Risk and Income Fluctuations in Emerging Economies,” American Economic Review, June

2008, 98 (3), 690–712.

and Ananth Ramanarayanan, “Default and the Maturity Structure in Sovereign Bonds,” Journal of Political Economy,

April 2012, 120 (2), 187–232.

, Lilia Maliar, Serguei Maliar, and Viktor Tsyrennikov, “Envelope Condition Method with an Application to Default

Risk Models,” Journal of Economic Dynamics and Control, August 2016, 69, 436–459.

, Xavier Mateos-Planas, and Jose-Victor Rios-Rull, “Partial Default,” Journal of Political Economy, June 2023, 131

(6).

, Yan Bai, and Gabriel P Mihalache, “Monetary Policy and Sovereign Risk in Emerging Economies (NK-Default),”

Working Paper 26671, National Bureau of Economic Research January 2020.

Auclert, Adrien and Matthew Rognlie, “Unique equilibrium in the Eaton–Gersovitz model of sovereign debt,” Journal of

Monetary Economics, December 2016, 84, 134–146.

Bhaskar, V., G. J. Mailath, and S. Morris, “A Foundation for Markov Equilibria in Sequential Games with Finite Social

Memory,” Review of Economic Studies, 2012, 80 (3), 925–948.

Bulow, J. and K. Rogoff, “Sovereign Debt: Is to Forgive to Forget?,” American Economic Review, 1989, 79 (1), 43–50.

Carroll, Christopher D., “The method of endogenous gridpoints for solving dynamic stochastic optimization problems,”

Economics Letters, 2006, 91 (3), 312–320.
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Appendix: Proofs

Proposition 1 (Two Types of Equilibria). With low enough income, and outstanding debt b∗ > 0,

either (i) the sovereign finds it optimal to enter the risky borrowing region, i.e. h(y , b∗) > b∗, in which

case br = 0, or (ii) the sovereign never enters the risky borrowing region h(y , b∗) = b∗, in which case

br = b∗.

Proof of Proposition 1. Case (ii) is straightforward given our definition of br in Section 2.1. To prove

Case (i), we first show that the borrower increases its indebtedness when the income realization is

sufficiently low. This is the purpose of the following lemma.

Lemma 1. For any 0 < b < b∗ there exists some δ(b) > 0, such that the borrowing policy satisfies

h(x , b) > b for each x ∈ [y , y + δ).

Proof of Lemma 1. The proof builds on the following result: for any 0 < b < b∗, the

optimal consumption choice at the lowest income satisfies c(y , b) > y .

Suppose not, that is c(y , b) ≤ y for 0 < b < b∗. Then, for some small ∆, the sovereign

could issue an additional ∆
q(b′) units of debt today which would yield uc(c(y , b))∆ utils of

benefit. The expected cost of doing so is:

∆β

q(b′)

∫
uc(c(y

′, b′))dFy (y
′) < uc(c(y , b))∆.

So the sovereign is better off doing so, a contradiction to optimality. Now, define δ(b) as:

δ(b) = sup {y : c(y , b) ≥ y} − y .

Given this result, the claim follows from the budget constraint. For any x ∈ [y , y + δ(b)),

c(x , b)− x = q(b′)[b′ − (1− λ)b]− b > 0.

Rearranging yields to

b′ >
b

q(b′)
+ (1− λ)b.

Note, the bond price is bounded above by the dilution risk-free price

q(b′) ≤ 1

r + λ
<

1

λ
.
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Which implies:

b′ >
b

q(b′)
+ (1− λ)b > λb + (1− λ)b = b.

Proving the original claim.

Case (i) relies on the result we established in Lemma 1. Note, Lemma 1 implies if the sovereign starts

with b0 > 0 and receives a bad shock, x1 ∈ [y , y + δ(b0)), then debt increases b1 > b0, and after

another bad shock x2 ∈ [y , y + δ(b1)), then debt increases again b2 > b1, and so on. So with positive

probability, after a sequence of bad shocks, the sovereign will end up at the risk-free limit b∗.

At which point the sovereign will enter the risky borrowing region by assumption if income is low enough

h(y , b∗) > b∗. The lender assesses this probability at time 0, and discounts the debt accordingly, i.e for

any b > 0 the debt receives a discount reflecting this potential default risk.

Proposition 2 (Zero Extreme Value Shock). As α → 0, the decision problem converges to the one

presented in Section 2.

Proof of Proposition 2. Immediate from Iskhakov et al. (2017, Theorem 5).

Proposition 3 (Monotonicity). In the above environment with T < ∞,

1. Values and Decision Rules across States For all t,

1.1 V R
t (y , b) is strictly increasing in y and strictly decreasing in b.

1.2 Wt(b) is non-increasing in b.

1.3 χt(b) is non-increasing in b.

1.4 If qt(b
′) is non-increasing in b′, ht(y , b) is non-increasing in y and non-decreasing in b.

2. Debt Prices across Sates: For all t, qt(b) is non-increasing in b.

3. Values and Default over Time: If qt(b) ≥ qt+1(b), for all t < T and all (y , b),

3.1 St(y , b) ≥ St+1(y , b).

3.2 Zt(b) ≥ Zt+1(b).

3.3 χt(b) ≥ χt+1(b).

4. Debt Prices over Time: For all t < T, qt(b) ≥ qt+1(b).

30



Proof of Proposition 3.1.1. Consider the budget set given by:

Bt(y , b) =
{
(c , b′) : 0 ≤ c ≤ y − b + qt(b

′)[b′ − (1− λ)b]
}

Clearly, if ŷ > y and b̃ > b, then Bt(y , b) ⊆ Bt(ŷ , b) and Bt(y , b̃) ⊆ Bt(y , b). This implies the optimal

choice h = h(y , b) ∈ Bt(ŷ , b), and h̃ = h(y , b̃) ∈ Bt(y , b). This implies monotonicity in y since,

V R
t (ŷ , b) = u

(
ŷ − b + q(ĥ)[ĥ − (1− λ)b]

)
+ βWt+1(ĥ)

≥ u
(
ŷ − b + q(h)[h − (1− λ)b]

)
+ βWt+1(h)

> u
(
y − b + q(h)[h − (1− λ)b]

)
+ βWt+1(h)

= V R
t (y , b),

where the first inequality follows from the definition of optimality, and the second from the strict mono-

tonicity of u(c). This also implies monotonicity in b since,

V R
t (y , b) = u

(
y − b + q(h)[h − (1− λ)b]

)
+ βWt+1(h)

≥ u
(
y − b + q(h̃)[h̃ − (1− λ)b]

)
+ βWt+1(h̃)

> u
(
y − b̃ + q(h̃)[h̃ − (1− λ)b̃]

)
+ βWt+1(h̃)

= V R
t (y , b̃),

where the first inequality follows from the definition of optimality, and the second from the strict mono-

tonicity of u(c).

Proof of Proposition 3.1.2. Consider the definition of Wt(b).

Wt(b) =

∫ ∫
max

{
V R
t (y , b) + ϵR ,V A

t (y) + ϵA
}
dFϵ(ϵ)dFy (y),

=

∫
α ln

(
eV

R(y ,b)/α + eV
A(y)/α

)
dFy (y)− αln(2).

The proof is immediate from Proposition 3.1.1.

Proof of Proposition 3.1.3. Recall the definition of the ex-ante repayment probability,

χt(b) =

∫
ϕt(y , b)dFy (y) =

∫
eV

R
t (y ,b)/α

eV
R
t (y ,b)/α + eV

A
t (y)/α

dFy (y).
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The claim follows immediately from Proposition 3.1.1.

Proof of Proposition 3.1.4. Similar to Chatterjee and Eyigungor (2012), define the loss function of

choosing b′0 instead of b′1 in state (y , b) by

∆(b′0, b
′
1|b) = (1− λ)b0

[
q(b′1)− q(b′0)

]
+ q(b′0)b

′
0 − q(b′1)b

′
1.

Observe that ∆ does not depend on y given that y is i.i.d. distributed.

For the first part of the proposition, fix y and consider two debt levels b0 > 0 and b1 > 0 such that

b1 > b0 > 0. Assume that in b0, the borrower optimally chooses b′0 and obtains a consumption level c0.

This means that for a b̂′ < b′0 leading to a consumption level ĉ, we have by optimality that

u(c0) + βW (b′0) ≥ u(ĉ) + βW (b̂′). (20)

As W (b′0) ≤ W (b̂′) from Proposition 3.1.2, it must be that c0 ≥ ĉ . Now observe that ∆(b′0, b̂
′|b0) =

c0 − ĉ ≥ 0 and

∆(b′0, b̂
′|b0)−∆(b′0, b̂

′|b1) = (1− λ)(b0 − b1)
[
q(b̂′)− q(b′0)

]
≤ 0,

where the inequality comes form the fact that b1 > b0 > 0 and that q(b′) is non decreasing in b′. This

means that the loss in b1 is at least as large as the loss in b0. With this define c̃ being the consumption

level in state b1 choosing b′0. By the budget constraint, it directly follows that c̃ < c0 given that

b1 > b0 > 0. Combining this with the strict concavity of u(·), we get

u(c̃)− u(c̃ −∆(b′0, b̂
′|b1)) > u(c0)− u(c0 −∆(b′0, b̂

′|b1))

≥ u(c0)− u(c0 −∆(b′0, b̂
′|b0))

= u(c0)− u(ĉ) ≥ 0,

where the first inequality comes from c0 > c̃ , the second from ∆(b′0, b̂
′|b1) ≥ ∆(b′0, b̂

′|b0) and the

third from the definition of ∆(b′0, b̂
′|b0). This means that the wedge in utility between c̃ and ĉ =

c̃ −∆(b′0, b̂
′|b1) is larger than the wedge in utility between c0 and ĉ = c0 −∆(b′0, b̂

′|b0). By (20), this

implies that

u(c̃) + βW (b′0) > u(ĉ) + βW (b̂′).
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Hence it cannot be that in b1, the optimal choice b′ is lower than b′0. The bond policy function is

therefore non decreasing in b.

For the second part of the proposition, fix b and consider two income levels y0 > 0 and y1 > 0

such that 0 < y1 < y0. As before, assume that in y0, the borrower optimally chooses b′0 and obtains a

consumption level c0. Considering a b̂′ < b′0 leading to a consumption level ĉ , we get the same argument

around (20) as before. With this define c̃ being the consumption level in state y1 choosing b′0. From

the budget constraint, c̃ = c0 + y1 − y0 < c0 as 0 < y1 < y0. Combining this with the strict concavity

of u(·), we get

u(c̃)− u(c̃ −∆(b′0, b̂
′|b) + y1 − y0) > u(c0)− u(c0 −∆(b′0, b̂

′|b) + y1 − y0)

> u(c0)− u(c0 −∆(b′0, b̂
′|b))

= u(c0)− u(ĉ) ≥ 0.

The wedge in utility between c̃ and ĉ = c̃ − ∆(b′0, b̂
′|b) + y1 − y0 is larger than the wedge in utility

between c0 and ĉ = c0 −∆(b′0, b̂
′|b). By (20), it cannot be that in y1, the optimal choice b′ is lower

than b′0. The bond policy function is therefore non increasing in y .

Proof of Proposition 3.2. We prove this statement by taking the limit of finite horizon. First observe that

for b ≤ 0, qt(b) = p̄
∑T−t−1

k=0 (p̄(1− λ))k . This implies that for any b1 < b2 ≤ 0, qt(b1)− qt(b2) = 0.

Now consider b > 0. The bond price is given by

qt(b) = p χt+1(b) + p(1− λ)

∫ y

y
ϕt+1(y , b) qt+1

[
ht+1(y , b)

]
dFy .

The proof goes by backward induction. In the last period T , the borrower does not necessarily default

for every b > 0. This depends on the exact realization of (ϵR , ϵA). Nevertheless, bonds issued in T − 1

are one period, given that T is the last period. Hence, the bond price in T − 1 is given by

qT−1(b) = p χT (b).

From Proposition 3.1.3, for any 0 < b1 < b2,

qT−1(b1)− qT−1(b2) = p [χT (b1)− χT (b2)] ≥ 0.
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Subsequently, in period T − 1, we have that

qT−2(b1)− qT−2(b2) =p̄ [χT−1(b1)− χT−1(b2)]

+ p̄(1− λ)

∫ ȳ

y
ϕT−1(y , b1)qT−1(hT−1(y , b1))− ϕT−1(y , b2)qT−1(hT−1(y , b2))dFy

≥p̄ [χT−1(b1)− χT−1(b2)]

+ p̄(1− λ)

∫ ȳ

y
ϕT−1(y , b2) {qT−1(hT−1(y , b1))− qT−1(hT−1(y , b2))} dFy︸ ︷︷ ︸

≡A

,

where the inequality comes from Proposition 3.1.3. Relying on the same corollary we have that

χT−1(b1) − χT−1(b2) ≥ 0. In addition, from Proposition 3.1.4, hT−1(y , b1) ≤ hT−1(y , b2) imply-

ing that A ≥ 0 given that qT−1(b1)− qT−1(b2) ≥ 0 for 0 > b1 > b2. Hence,

qT−2(b1)− qT−2(b2) ≥ 0.

Repeating the argument until t = 0 completes the proof.

Proof of Proposition 3.3.1. Suppose that at time t, the borrower chooses a sub-optimal strategy to

mimic the optimal policy of the subsequent period ct+1, from time t to T − 1. This is feasible as

qt(b) ≥ qt+1(b). Thus, consumption at time t, ... ,T − 1 is the same as the optimal consumption for

a borrower in the same state at time t + 1 to T . This implies the value of consumption from t + 1 to

T of a sovereign entering state (y , b) at time t, which follows this sub-optimal strategy, is equal to the

value of an optimizing sovereign from t + 1 to T entering the same state (y , b) at time t + 1. What’s

more, the sovereign at time t also has an additional period of consumption c̃T > 0. As this strategy is

sub-optimal, we have that

V R
t (y , b) ≥ u(ct+1(y , b)) + Et

{ T−1∑
j=t+1

βj−tu(cj+1(yj , bj)) + βT−tu(c̃T (yT , bT ))
}

= V R
t+1(y , b) + Etβ

T−tu(c̃T (yT , bT )).

The expectation term is over both the income and the utility shock. From the previous equation, we

obtain that

V R
t (y , b)− V R

t+1(y , b) ≥ Etβ
T−tu(c̃T (yT , bT )). (21)
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In addition, observe that

V A
t (y) = u(y) +

T∑
j=t+1

βj−t

∫ y

y
u(y ′)dFy (y

′),

V A
t+1(y) = u(y) +

T∑
j=t+2

βj−t−1

∫ y

y
u(y ′)dFy (y

′).

Hence

V A
t (y)− V A

t+1(y) = βT−t

∫ y

y
u(y ′)dFy (y

′). (22)

Note that if default is optimal in T in at least one state, then Etβ
T−tu(yT (yT , bT )) ≤ Etβ

T−tu(cT (yT , bT )),

otherwise Etβ
T−tu(yT (yT , bT )) < Etβ

T−tu(cT (yT , bT )). Hence, combining (21) and (22) implies that

V R
t (y , b)− V A

t (y) ≥ V R
t+1(y , b)− V A

t+1(y),

as desired.

Proof of Proposition 3.3.2. Consider the definition of Zt(b).

Zt(b) =

∫
max

{
V R
t (y , b),V A

t (y)
}
− V A

t (y)dFy (y)

=

∫
max

{
V R
t (y , b)− V A

t (y), 0
}
dFy (y).

The proof is immediate from Proposition 3.3.1.

Proof of Proposition 3.3.3. Recall the definition of the repayment probability,

ϕt(y , b) =
eV

R
t (y ,b)/α

eV
R
t (y ,b)/α + eV

A
t (y)/α

.

Hence, it suffices to show that

V R
t (y , b)− V A

t (y) ≥ V R
t+1(y , b)− V A

t+1(y),

which follows from Proposition 3.3.1. Furthermore, recall that χt(b) =
∫
y ϕt(y , b) dFy . Hence, the

monotonicity of ϕt(y , b) in t implies the monotonicity of χt(b) in t.
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Proof of Proposition 3.4. First observe that for b ≤ 0, qt(b) = p̄
∑T−t−1

k=0 (p̄(1− λ))k for all t < T

implying that

qt(b)− qt+1(b) > 0.

Now for b > 0, we develop an inductive argument. The induction hypothesis relies on the fact that, in

a given state (y , b), the borrower cannot trade new bonds in T when repaying. This is as if qT (b) = 0

for all b. As a result, the borrower cannot be worse off repaying in T − 1 than repaying in T in a given

state (y , b) as qT−1(b) is bounded below by zero.

To show this, consider that α = 0 meaning that we are back to the decision problem of Section 2

without taste shocks. In this case, at T , the borrower defaults for any b > 0 implying that qT−1(b) = 0

for all b > 0. In T − 1, if the borrower chooses b′ > 0, its value is u(y − b) + β
∫
u(y ′)dFy (y

′)

as qT−1(b
′) = 0. A default is strictly preferable here as u(y) + β

∫
y ′ u(y

′)dFy (y
′) > u(y − b) +

β
∫
y ′ u(y

′)dFy (y
′). Conversely, if the borrower chooses b′ < 0, its values reads u(y −b+qT−1[b

′− (1−

λ)b])+β
∫
y ′ u(y

′− b′)dFy (y
′) where qT−1 =

1
1+r . The borrower might not necessarily default in T − 1

for sufficiently low b. Hence, qT−2(b) ≥ 0 for all b > 0 leading to

qT−2(b)− qT−1(b) ≥ 0.

When α ̸= 0, a similar argument applies. The only difference is that qT−1(b) ≥ 0 for all b > 0 meaning

that the borrower can borrow (and not only save) in T − 1. As it remains true that qT (b) = 0 for all b,

the borrower cannot be worse off repaying in T − 1 than repaying in T in a given state (y , b). Hence,

χT−1(b)− χT (b) ≥ 0 for all b which implies that

qT−2(b)− qT−1(b) =p̄ [χT−1(b)− χT (b)]

+ p̄(1− λ)

∫ ȳ

y
ϕT−1(y , b)qT−1(hT−1(y , b))dFy ≥ 0.

The above argument gives us the induction hypothesis. We then simply need to show that if

qk+1(b) ≥ qk+2(b), for each k ≥ t, then the bond price satisfies qt(b) ≥ qt+1(b) for every b for all

t < T − 2. For this, observe that

qt(b)− qt+1(b) =p̄ [χt+1(b)− χt+2(b)]

+ p̄(1− λ)

∫ ȳ

y
ϕt+1(y , b)qt+1(ht+1(y , b))− ϕt+2(y , b)qt+2(ht+2(y , b))dFy

36



≥ p̄ [χt+1(b)− χt+2(b)]︸ ︷︷ ︸
≡A

+ p̄(1− λ)

∫ ȳ

y
ϕt+2(y , b) {qt+1(ht+1(y , b))− qt+2(ht+2(y , b))} dFy︸ ︷︷ ︸

≡B

,

where the inequality comes from Proposition 3.3.3 using the induction hypothesis. Relying on the same

argument, A ≥ 0. We next show that B ≥ 0 with the following lemma.

Lemma 2. If qt(b) ≥ qt+1(b) for each t < T and b < b∗∗t+1, then ht(y , b) is such that qt(ht(y , b)) ≥

qt+1(ht+1(y , b)).

Proof of Lemma 2. Fix (y , b) and assume by contradiction that ht(y , b) is such that qt(ht(y , b)) <

qt+1(ht+1(y , b)). This implies by Proposition 3.2. that ht(y , b) > ht+1(y , b). Denote the

consumption at time t when the bond choice is ht(y , b) by ct(ht(y , b)). We now consider

two cases:

1. ct(ht) ≤ ct+1(ht+1)

The contradiction is immediate. The borrower is strictly better off choosing ht+1 in t than ht .

The assumption that ct(ht) ≤ ct+1(ht+1) implies that

qt(ht)(ht − (1− λ)b) < qt+1(ht+1)(ht+1 − (1− λ)b).

As qt(ht) < qt+1(ht+1), (ht+1 − (1−λ)b) > 0 meaning that there is no buyback with ht+1. This

further implies that by Proposition 3.2. that

qt+1(ht+1)(ht+1 − (1− λ)b) ≤ qt(ht+1)(ht+1 − (1− λ)b),

which in turn implies that ct(ht+1) ≥ ct+1(ht+1) ≥ ct(ht). In addition, given that ht > ht+1,

Proposition 3.1.2 implies that Wt+1(ht) ≤ Wt+1(ht+1). Hence,

u(ct(ht+1)) + βWt+1(ht+1) ≥ u(ct(ht)) + βWt+1(ht).

We rule out the inequality by assuming that the borrower always chooses the lowest level of debt

in case of a tie. Hence, the choice ht is not optimal, a contradiction.

2. ct(ht) > ct+1(ht+1)
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To show that there is a contradiction, we first need the following intermediate result.

Claim 1. There exists a h̃t < ht wich leads to a consumption level ct(h̃t) < ct(ht) such that

u(ct(ht))− u(ct(h̃t)) ≤ β
[
Zt+1(ht+1)− Zt+2(h̃t)

]
, (23)

and

Zt+1(ht+1)− Zt+2(h̃t) ≤ Zt+2(h̃t)− Zt+1(ht). (24)

Proof of Claim 1. Note that neither (23) nor (24) put any restriction on the sign of

h̃t − ht+1 given Proposition 3.1.2 and Proposition 3.3.2. The same holds true for the

sign of ct(h̃t)− ct+1(ht+1).

Observe that equation (23) is satisfied in the interval [b̃, ht ] where

u(ct(ht))− u(ct(h̃t)) = β
[
Zt+1(ht+1)− Zt+2(b̃)

]
.

Conversely, equation (24) is satisfied in the interval [h̄, ˜̃b] with h̄ < ht+1 where

Zt+1(ht+1)− Zt+2(
˜̃b) = Zt+2(

˜̃b)− Zt+1(ht).

A sufficient condition for such a h̃t to exist is to have Zt+2(
˜̃b) < Zt+2(b̃).

βZt+2(b̃) = βZt+1(ht+1) + u(ct(h̃t))− u(ct(ht)).

βZt+2(
˜̃b) =

1

2
β
[
Zt+1(ht) + Zt+1(ht+1)

]
.

The sufficient condition is therefore satisfied whenever

u(ct(h̃t))− u(ct(ht)) >
1

2
β
[
Zt+1(ht)− Zt+1(ht+1)

]
=
1

2
β
[
Wt+1(ht)−Wt+1(ht+1)

]
≤ 0,

where the equality comes from the definition of Zt+1 and the last inequality comes from

the fact that ht > ht+1. However, we rule out the fact that Wt+1(ht)−Wt+1(ht+1) =

0 given that qt(ht) < qt+1(ht+1) ≤ qt(ht+1) and ct(ht) > ct(h̃t). Thus, there exists
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a h̃t such that both equations (23) and (24) are satisfied.

Given equation (23), we have

u(ct(ht)) + βZt+2(h̃t) ≤ u(ct(h̃t)) + βZt+1(ht+1),

Observe that, given equation (24), from Proposition 3.3.2

Zt+1(ht+1)− Zt+2(h̃t) ≤ Zt+2(h̃t)− Zt+1(ht),

≤ Zt+1(h̃t)− Zt+1(ht).

Define ϖ such that Zt+2(h̃t)+ϖ = Zt+1(ht). Hence, Zt+1(ht+1)+ϖ ≤ Zt+1(h̃t)). Thus adding

βϖ on both sides of the previous expression leads to

u(ct(ht)) + βZt+1(ht) ≤ u(ct(h̃t)) + βZt+1(h̃t).

As Zt+1(ht)− Zt+1(h̃t) = Wt+1(ht)−Wt+1(h̃t), we have that

u(ct(ht)) + βWt+1(ht) ≤ u(ct(h̃t)) + βWt+1(h̃t).

We rule out the inequality by assuming that the borrower always chooses the lowest level of debt

in case of a tie. This contradicts the fact that ht is optimal.

Thus, B ≥ 0 and the bond price qt is monotonic in t.

Proposition 4 (Existence and Uniqueness). Let q∗ be the limiting price function of the finite horizon

problem, and Ω = [y , y ] × [b, b] be the state space. For a function S : Ω → R defined as S(y , b) =

V R(y , b)− V A(y), define the operator (KS)(Ω; q∗) as:

(KS)(y , b; q∗) =sup
b′

{
u(y − b + q∗(b′)[b′ − (1− λ)b])− u(y) + β

∫ y

y
max

{
S
(
y ′, b′; q∗

)
, 0
}
dFy

(
y ′
)}

.

Then (i) the limit of the finite horizon problem is the fixed point of K given by S(y , b; q∗), and (ii) this

fixed point exists and is unique.
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Proof of Proposition 4. We prove this proposition in three parts. We first establish that the uniform

convergence of the bond price. Second, we show that the operator K is c contraction for a given q.

Finally, we show that this operator converges when the bond price converges.

Theorem 1 (Dini). Suppose the sequence of continuous functions fn : K → R converges pointwise to

a continuous function f : K → R where K is a compact set, and furthermore fn+1(x) ≥ fn(x) for every

x ∈ K, then fn converges uniformly to f .

Corollary 1 (Uniform Convergence of qt(b) in t). The price qt(b) converges uniformly to a limiting

price q∗ as the horizon of the problem goes to infinity.

Proof of Corollary 1. By Proposition 3.4., qn+1(b) ≥ qn(b), where n = T − t, as (qn) is

a sequence of nonincreasing and bounded functions it converges pointwise to q∗, and by

Dini’s Theorem we can strengthen this to uniform convergence.

Having shown the uniform convergence of the bond price, we now show that the operator K is a

contraction given q.

Claim 2. The operator K is a contraction for a given price q.

Proof of Claim 2. Recall the definition of the operator K :

K (S)(y , b; q) = max
c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫
max

{
S(y ′, b′), 0

}
dFy

}
(i) Monotonicity. Suppose S0 ≤ S1, then:

K (S0)(y , b; q) = max
c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫
max

{
S0(y

′, b′), 0
}
dFy

}
≤ max

c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫
max

{
S1(y

′, b′), 0
}
dFy

}
= K (S1)(y , b; q).

(ii) Discounting. Let a > 0, then:

K (S + a)(y , b; q) = max
c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫
max

{
S(y ′, b′) + a, 0

}
dFy

}
≤ max

c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫ [
max

{
S(y ′, b′), 0

}
+ a

]
dFy

}
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= max
c,b′∈Γ(y ,b;q)

{
u(c)− u(y) + β

∫
max

{
S(y ′, b′), 0

}
dFy + βa

}
= K (S)(y , b; q) + βa.

We finally establish the convergence property of the operator K .

Claim 3. The operator K is continuous in q.

Proof of Claim 3. The idea here is similar to Chatterjee and Eyigungor (2012), we fix a

choice b′ and consider S0,b′(y , b, ; q
n), that is, the value of picking b′ today and following

the program in all future periods. Clearly, S0,b′ is continuous in qn because the choice

set for consumption c is continuous in qn and utility u(c) is continuous in c . Next we

consider K (S0)(y , b; q
n) = supb′ S0,b′(y , b, ; q

n), which by the Theorem of the Maximum is

continuous in qn.

Corollary 2. If qn → q∗ and S̄(y , b; qn) is a fixed point of K, then S̄(y , b; qn) → S̄(y , b; q∗).

Proof of Corollary 2. Direct from the fact that the operator is continuous in q. See Theorem

4.3.6 in Hutson and Pym (1980).

Taken together with Corollary 1, Claims 2 and 3, and Corollary 2 show there is (i) a unique sequence of

prices {qn} with limit q∗ implied by the finite horizon problem, and (ii) the value of the sovereign has a

unique limiting fixed point S̄(y , b; q∗).

Proposition 5 (Convexity). If α is sufficiently large, then the decision problem is convex.

Proof of Proposition 5. Observe that

lim
α→∞

G (y , b)

α
= lim

α→∞

1

α

∫
ϵ
V (y , b, ϵ) dFϵ = lim

α→∞
ln
(
eV

R(y ,b)/α + eV
A(y)/α

)
− ln(2) = ln(2)− ln(2) = 0.

As noted by Iskhakov et al. (2017), this implies that V R(y , b) directly inherits the global concavity from

the properties of the utility function when the scale parameter is sufficiently large.

In addition, with α → ∞, the borrower decides to default with probability 0.5 irrespective of (y , b).

The bond price for any b′ > 0 is therefore q(b′) ≡ q = 1
1+2r and the budget set is convex.
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Proposition 6 (Smoothness). If b ≥ 0, ϕ, h and q are of class C∞ almost everywhere.

Proof of Proposition 6. The proof goes by backward induction.

• At time T :

There is no continuation value as the world ends. As a result, hT (y , b) = 0 for all y ∈ Y and

all b ∈ B. The bond policy function hT (y , b) is trivially C∞. However, the sovereign does not

necessarily default for all b > 0. This depends on the realization of (ϵR , ϵA). The repayment

probability is given by

ϕT (y , b) =
eu(y−b)/α

eu(y−b)/α + eu(y)/α
.

We can derive an expression for its first derivative with respect to b

ϕb,T (y , b) =− uc(cT )

α

eu(y−b)/α

eu(y−b)/α + eu(y)/α

[
1− eu(y−b)/α

eu(y−b)/α + eu(y)/α

]

=− uc(cT )

α
ϕT (y , b)[1− ϕT (y , b)].

The differentiability of ϕT (y , b) directly depends on the differentiability of u. Given that u is C∞,

ϕT (y , b) is of class C∞, except for a jump at b = 0. Given this, the bond price at time T − 1

corresponds to the price of a one-period bond

qT−1(b) =

pχT (b) if b > 0

p else

Except for a jump discontinuity at b = 0, qT−1(b) is of class C∞ given the property of ϕT (y , b).

As we will see, the former discontinuity is the reason why this proposition only applies to b ≥ 0.

• At time T − 1:

The optimal borrowing policy is determined by the GEE. In points such that bT < 0, the optimal

borrowing is the solution to (EE),

gEE
T−1(bT |bT−1, y) =

uc(cT−1)p(1 + (1− λ)p)− β

∫ y

y
uc(cT )[1 + (1− λ)qT (hT (y

′, bT ))]dFy = 0.
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We observe that the integral on the right-hand side contains the price qT and the bond policy

function hT . The price admits a jump discontinuity at b = 0 which is an issue as the integral will

not be differentiable at this point. That is why this proposition restricts its attention to b ≥ 0.

Conversely, in points such that bT > 0, the optimal borrowing is the solution to (GEE),

gGEE
T−1(bT |bT−1, y) =

uc(cT−1)

[
qT−1(bT ) +

{
p(1− λ)

∫
y ′
ϕT (y

′, bT )qb,T (hT (y
′, bT ))hb,T (y

′, bT )dFy

+ p

∫
y ′
ϕb,T (y

′, bT )[1 + (1− λ)qT (hT (y
′, bT ))]dFy

}
(bT − (1− λ)bT−1)

]

− β

∫
y ′
ϕT (y

′, bT )uc(cT )[1 + (1− λ)qT (hT (y
′, bT ))]dFy = 0.

The existence of the derivative qb,T and hb,T is ensured by the fact that qT and hT are both of

class C∞ almost everywhere. The price admits a jump discontinuity which is not an issue as it is

outside the interval considered given that b ≥ 0. Moreover, the repayment probability ϕT is C∞

except for a kink at 0 which is outside the interval considered. Moreover, the derivative of gGEE
T−1

with respect to bT is invertible.13 As a result, gGEE
T−1(bT |bT−1, y) is of class C∞ and so does hT−1

except for a discontinuity at 0.

The repayment probability is given by

ϕT−1(y , b) =
eV

R
T−1(y ,b)/α

eV
R
T−1(y ,b)/α + eV

A
T−1(y)/α

.

As before, we can derive an expression for its first derivative with respect to b

ϕb,T−1(y , b) =− uc(cT−1)

α
[1 + (1− λ)qT−1(hT−1)]

eV
R
T−1(y ,b)/α

eV
R
T−1(y ,b)/α + eV

A
T−1(y)/α

[
1− eV

R
T−1(y ,b)/α

eV
R
T−1(y ,b)/α + eV

A
T−1(y)/α

]

=− uc(cT−1)

α
[1 + (1− λ)qT−1(hT−1)]ϕT−1(y , b)[1− ϕT−1(y , b)].

Given that u is C∞, ϕT−1(y , b) is of class C∞, except for a jump at b = 0. Given this repayment

13We do not derive the expression for the derivative. The result is immediate after taking the derivative and the fact
that the utility function is bijective. The same argument applies to all g functions considered in this section.
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probability, the bond price at time T − 2 reads

qT−2(b) =

pχT−1(b) + p(1− λ)
∫
y ′ ϕT−1(y

′, b)qT−1(hT−1(y
′, b))dFy if b > 0

p(1 + (1− λ)p) else

When b > 0, the price qT−1 and the bond policy function hT−1 appear in the integral and admit

a jump at 0. The jump discontinuity is not an issue as by assumption, b ≥ 0, meaning that the

jump is outside the interval considered. Thus, except for the discontinuity at b = 0, qT−1(b) is

of class C∞.

• At time T − n for T ≥ n ≥ 2:

We develop an inductive argument for the remaining periods. We want to show that properties

of the price function, the repayment probability and the borrowing policy are preserved from one

iteration to the other for T − n for all T ≥ n ≥ 2. We have previously shown that properties are

preserved throughout T to T − 1 (i.e. induction hypothesis).

We have that qT−n and dT−n+1 are of class C∞ except for discontinuities at 0. Similarly, qT−n+1

and hT−n+1 are of class C∞ except for discontinuities at 0.

As for every iteration, the optimal borrowing policy is determined by the GEE. In points such that

bT−n+1 < 0, the optimal borrowing is the solution to (EE),

gEE
T−n(bT−n+1|bT−n, y) =

uc(cT−n)qT−n(y , bT−n+1)− β

∫ y

y
uc(cT−n+1)[1 + (1− λ)qT−n+1(hT−n+1(y

′, bT−n+1))]dFy = 0.

We observe that the integral on the right-hand side contains the price qT−n+1 and the bond policy

function hT−n+1. Those two objects admit discontinuities. Again, as the discontinuity at 0 is a

jump for the price, the integral is not differentiable at this point. However, this is out of the scope

of this proposition given that we consider b ≥ 0.

Moreover, in points such that bT−n+1 > 0, the optimal borrowing is the solution to (GEE),

gGEE
T−n(bT−n+1|bT−n, y) = uc(cT−n)

[
qT−n(bT−n+1) + (bT−n+1 − (1− λ)bT−n)
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{
p(1− λ)

∫
y ′
ϕT−n+1(y

′, bT−n+1)qb,T−n+1(hT−n+1(y
′, bT−n+1))hb,T−n+1(y

′, bT−n+1)dFy

+ p

∫
y ′
ϕb,T−n+1(y

′, bT−n+1)[1 + (1− λ)qT−n+1(hT−n+1(y
′, bT−n+1))]dFy

}]
− β∫

y ′
ϕT−n+1(y

′, bT−n+1)uc(cT−n+1)[1 + (1− λ)qT−n+1(hT−n+1(y
′, bT−n+1))]dFy = 0.

The existence of the derivative qb,T−n+1 and hb,T−n+1 is ensured by the fact that qT−n+1 and

hT−n+1 are both of class C∞ except for discontinuities at 0. Given that b ≥ 0 by assumption,

the discontinuity at 0 is not an issue. Moreover, the derivative of gGEE1
T−n with respect to bT−n is

invertible. As a result, gGEE2
T−n (bT−n+1|bT−n, y) is of class C∞ and so does hT−n by application of

the IFT. Thus, hT−n(y , b) is of class C∞ and admits a discontinuity at 0.

The repayment probability admits one discontinuity at 0 and is given by

ϕT−n(y , b) =
eV

R
T−n(y ,b)/α

eV
R
T−n(y ,b)/α + eV

A
T−n(y)/α

.

As before, given that u is C∞, ϕT−n(y , b) is of class C∞, except for a jump at b = 0. Given this

repayment probability, the bond price at time T − n − 1 reads

qT−n−1(b) = q

pχT−n(b) + p(1− λ)
∫
y ′ ϕT−n(y

′, b)qT−n(hT−n(y
′, b))dFy if b > 0

p
∑T−(T−n)

i=0 [(1− λ)p]i else

The price qT−n and the bond policy function hT−n appear in the integral. Those two objects are

of class C∞ but admit a discontinuity at 0 which is outside the interval considered. Thus, except

for a discontinuity at b = 0, qT−n(b) is of class C∞.

We therefore conclude that the properties of the price function, the repayment probability and the

borrowing policy are preserved from one iteration to the other for T − n with any T ≥ n ≥ 2.

Proposition 7 (Limiting Bond Policy). The bond policy function, ht , converges pointwise to a function

h and the derivative of the bond policy function, hb,t , converges pointwise to hb = d
dbh.

Proof of Proposition 7. We prove this statement in two parts. First, we show that the implicit function

theorem implies some convergence properties (i.e. Lemma 3). Second, we show that as the GEE
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converges pointwise, so does the bond policy function.

Lemma 3. Consider a sequence of functions kn(x) where each kn is defined by the Implicit Function

Theorem from a particular C r function fn(x , y), that is, fn(x , kn(x)) = 0. If fn converges (pointwise)

uniformly, then kn converges (pointwise) uniformly.

Proof of Lemma 3. Suppose that fn converges uniformly to a function f , i.e. limn→∞ fn =

f . By application of the Implicit Function Theorem, there exists a unique k such that

f (x , k(x)) = 0. Assume by contradiction that kn does not converge uniformly. This means

that there exists an x such that

lim
n→∞

sup{|kn(x)− k(x)|} ≠ 0.

This implies that

lim
n→∞

sup{|fn(x , kn(x))− f (x , k(x))|} ≠ 0.

This directly contradicts the fact that kn is defined by the Implicit Function Theorem from

fn(x , y) as the implicit function is uniquely defined. Thus, if fn converges uniformly, so does

kn. Pointwise convergence directly follows from uniform convergence.

The GEE is defined over the space (y , b, b′) and we know that GEE (h(y , b)|y , b) = 0 with b′ =

h(y , b). Hence, for all (y , b) in the point a such that GEE (a|y , b) = 0, the GEE converges pointwise to

zero. Hence, the bond policy function, hn, converges pointwise by application of Lemma 3.

Now assume by contradiction that h′n = d
dbhn does not converge to g = d

dbh where h = limn→∞ hn.

From the Implicit Function Theorem, we know that h is unique. Moreover, as real limits are unique when

they exist, g is unique as well. Does this mean we reach a contradiction? Not directly as d
db limn→∞ hn(b)

is not necessarily equal to limn→∞
d
dbhn(b).

To obtain a contradiction observe that the GEE at time t depends on ht+1 and h′t+1. Hence, the

contradicting assumption leads to

lim
n→∞

GEEn(hn+1, h
′
n+1) ̸= GEE (h, g).
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This directly contradicts the fact that the GEE converges pointwise to zero given that both h and g are

uniquely defined such that GEE (h, g) = 0. Thus, h′n converges pointwise to g .

Proposition 8 (Limiting Bond Price). Let {qn} and {qb,n} denote the sequence of bond price and its

derivative. qn converges uniformly to q∗ and qb,n converges uniformly to q∗b, implying that q∗b = d
dbq

∗.

Proof of Proposition 8. Given Proposition 7, we can elaborate on the limit of the price being differen-

tiable that is:

q(b) = p̄

∫
ϕ [1 + (1− λ)q (h)] dF

qb = p̄

∫
ϕb [1 + (1− λ)q (h)] dF + p̄

∫
ϕ [1 + (1− λ)qb (h) hb] dF .

Define the operator T (Q)(b; h, hb) over the space of pairs of continuous bounded functions equipped

with the uniform metric, where Q = (q, qb) and h, hb are fixed parameters as:

T (Q)(b; h, hb) =

 p̄
∫
ϕ [1 + (1− λ)q (h)] dF

p̄
∫
ϕb [1 + (1− λ)q (h)] dF + p̄

∫
ϕ [1 + (1− λ)qb (h) hb] dF

 .

Assume T is continuous in h, hb. Clearly T is a contraction with modulus p̄. From Proposition 7, for

all finite n, hnb = d
dbh and hn → h and hnb → g then there is a fixed point Q̄ = (q̄(b; h, g), q̄b(b; h, g))

that satisfies

T (Q̄)(b; h, g) =

 p̄
∫
ϕ [1 + (1− λ)q̄ (h)] dF

p̄
∫
ϕb [1 + (1− λ)q̄ (h)] dF + p̄

∫
ϕ [1 + (1− λ)q̄b (h) g ] dF

 .

Theorem 2 (Rudin). Suppose {fn} is a sequence of functions, differentiable on [a, b] and such that

{fn(x0)} converges for some point x0 on [a, b]. If {f ′n} converges uniformly on [a, b], then {fn} converges

uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′n(x), x ∈ [a, b].

From our definition of T , qn converges uniformly (therefore pointwise) to q and qnb converges

uniformly to qb, moreover from our previous assumptions we know, for all finite n, qnb = d
dbq

n. Then by

the previous Theorem qb = d
db q̄.
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